

IPv6 Experiences

A RIPE Atlas Anchor Project Perspective

Colin Petrie and Nathalie Trenaman

- What is a RIPE Atlas anchor?
 - Soekris net6501-70
 - Well known target and powerful probe
 - 80 anchors installed
 - 200 probes targeting each anchor with measurements
 - Measurements between anchors

Requirements

- Capable of 10Mbit bandwidth (less needed today)
- RJ45 network connection
- Static IPv4 and IPv6 address unfiltered
 - RIPE NCC needs unrestricted access
- IPv6 address needs to be public
- IPv6 connection needs to be native

IPv6 Installation Challenges

- The hardware is purchased by the host
- The software is on a USB stick
 - With host-provided network info
- Anchor is configured to boot from USB stick

```
--ip=
IP address for the interface.

--ipv6=
IPv6 address for the interface.

--gateway=
Default gateway, as an IPv4 or IPv6 address.
```

- Silly bug
- Is fixed in CentOS7

IPv6 Installation Challenges

 RIPE Atlas anchor provisioning needs to be done over IPv4 and the RIPE NCC remotely configures the IPv6 part of the network later.

 RIPE Atlas anchors will do SLAAC "out-of-the-box", this needs to be disabled anyway when we do the manual configuration.

fOf 198.5)

Host IPv6 Installation Challenges

Example One

- Starting point:
 - SLAAC provided address, gateway via RA
 - Gateway address was link-local
- We pushed the static IPv6 configuration and connectivity was lost...
 - Global unicast gateway address we received from host did not respond to neighbor solicitations:

```
[root@nl-ams-as12345678 ~]# ndisc6 2001:db8:123:a:192:0:2:1 eth0
Soliciting 2001:db8:123:a:192:0:2:1 (2001:db8:123:a:192:0:2:1) on eth0...
Timed out.
Timed out.
Timed out.
No response.
```


Example One (continued)

- Yet, we are receiving incoming packets on the anchor!
- So the gateway works OK, but is not configured with a global address, or is configured not to respond to NS for that address
- It turned out that the host gave us the wrong gateway address
 - They use two different IPv6 addressing schemes
 - One embeds the IPv4 address
 - One uses ::1/64 as gateway

Example Two

- The host had working IPv6, ICMPv6 was working fine
- It turned out that TCP/UDP was not allowed

```
bla@loki:~$ mtr -u -nrc 10 nl-bla-as1234567.anchors.atlas.ripe.net
```

Start: Mon Dec 9 15:57:29 2013

HOST: loki Loss% Snt Last Avg Best Wrst StDev

1.l-- 2001:67c:2e8:13::2 0.0% 10 2.1 3.2 1.9 7.8 1.7

2.I-- 2001:db8:1::b800:2308:1 0.0% 10 2.0 4.2 2.0 15.1 4.0

3.1-- ??? 100.0 10 0.0 0.0 0.0 0.0 0.0

Host forgot to modify edge filters for IPv6

Example Three

- Host gave us an IPv6 address ending on all zeroes
 - 2001:db8:3bda:666::/64
- The router on their subnet did not respond to NS that originate from the "subnet-zero" address
- 2001:db8:3bda:666::2 worked fine

- RFC4291 section 2.6.1 provided clarity
 - Subnet Router Anycast Address

Example Three

Juniper kindly rejected the all-zeroes IPv6 address:

[edit interfaces ge-3/0/8 unit 666 family inet6]
'address 2001:db8:3bda:666::0'

Cannot assign address 0 on subnet
error: configuration check-out failed

 Lesson learned: The all-zeroes IPv6 address is not a normal IPv6 address

Example Four

 This anchor had an invalid router advertisement for an ethernet link

[bla@nl-aaa-as2345678 ~]\$ sudo rdisc6 eth0

Soliciting ff02::2 (ff02::2) on eth0...

Hop limit : 64 (0x40)

Stateful address conf. : No Stateful other conf. : No

Router preference : medium

Router lifetime : 1800 (0x00000708) seconds

Reachable time : unspecified (0x00000000)

Retransmit time : unspecified (0x0000000)

Source link-layer address: 74:8E:F8:BC:07:89

MTU : 1500 bytes (valid)

Prefix : 2001:db8:102:200::/56

Valid time : 2592000 (0x00278d00) seconds Pref. time : 604800 (0x00093a80) seconds

from fe80::768e:f8ff:febc:0789

Example Four

• [RFC2462] "An IPv6 address prefix used for SLAAC of an Ethernet interface must have a length of 64 bits"

- We saw different variations for the same problem:
 - /32
 - /56
 - -/128
- Because we override SLAAC with manual configuration, this problem is easy to solve

Example Five

- This host had a broken gateway
- Pings and traces did not succeed

[bla@nl-aaa-as2345678 ~]\$ sudo traceroute6 -l jp-tyo-as2500.anchors.atlas.ripe.net traceroute to jp-tyo-as2500.anchors.atlas.ripe.net (2001:200:0:6002::a10:1a2), 30 hops max, 80 byte packets 1 2001:db8:2381:fffe::1 (2001:db8:2381:fffe::1) 1.836 ms !N 2.265 ms !N 2.505 ms !N

- Also broken to other destinations within the same provider
- Default route for IPv6 was missing

Example Six

- This host was using a tunnel instead of native IPv6
- Also, they blocked the ICMPv6 message "packet too big"
- We discovered this because the size of packets we could deliver was 1480 bytes - instead of the 1500 configured on the wire
- When a packet bigger than 1480 bytes was sent, we did not receive the "packet too big" message, with a suggestion for a different MTU size
- Outbound packets of 1500 bytes were dropped

3:10ff,198. FOF 198.51

Conclusions

Lessons Learned...

 There are still IPv6 related software bugs in current mainstream server operating systems

Common mistakes are being made

IPv6 is still not as well understood as IPv4

Questions?

